//// *** Super-xBR code begins here - MIT LICENSE *** /// /* ******* Super XBR Scaler ******* Copyright (c) 2016 Hyllian - sergiogdb@gmail.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include typedef uint32_t u32; #define R(_col) ((_col>> 0)&0xFF) #define G(_col) ((_col>> 8)&0xFF) #define B(_col) ((_col>>16)&0xFF) #define A(_col) ((_col>>24)&0xFF) #define wgt1 0.129633f #define wgt2 0.175068f #define w1 (-wgt1) #define w2 (wgt1+0.5f) #define w3 (-wgt2) #define w4 (wgt2+0.5f) float df(float A, float B) { return abs(A - B); } float min4(float a, float b, float c, float d) { return std::min(std::min(a,b),std::min(c, d)); } float max4(float a, float b, float c, float d) { return std::max(std::max(a, b), std::max(c, d)); } template T clamp(T x, T floor, T ceil) { return std::max(std::min(x, ceil), floor); } /* P1 |P0|B |C |P1| C F4 |a0|b1|c2|d3| |D |E |F |F4| B F I4 |b0|c1|d2|e3| |e1|i1|i2|e2| |G |H |I |I4| P0 E A I P3 |c0|d1|e2|f3| |e3|i3|i4|e4| |P2|H5|I5|P3| D H I5 |d0|e1|f2|g3| G H5 P2 sx, sy -1 -1 | -2 0 (x+y) (x-y) -3 1 (x+y-1) (x-y+1) -1 0 | -1 -1 -2 0 -1 1 | 0 -2 -1 -1 -1 2 | 1 -3 0 -2 0 -1 | -1 1 (x+y) (x-y) ... ... ... 0 0 | 0 0 0 1 | 1 -1 0 2 | 2 -2 1 -1 | 0 2 ... 1 0 | 1 1 1 1 | 2 0 1 2 | 3 -1 2 -1 | 1 3 ... 2 0 | 2 2 2 1 | 3 1 2 2 | 4 0 */ float diagonal_edge(float mat[][4], float *wp) { float dw1 = wp[0]*(df(mat[0][2], mat[1][1]) + df(mat[1][1], mat[2][0]) + df(mat[1][3], mat[2][2]) + df(mat[2][2], mat[3][1])) +\ wp[1]*(df(mat[0][3], mat[1][2]) + df(mat[2][1], mat[3][0])) + \ wp[2]*(df(mat[0][3], mat[2][1]) + df(mat[1][2], mat[3][0])) +\ wp[3]*df(mat[1][2], mat[2][1]) +\ wp[4]*(df(mat[0][2], mat[2][0]) + df(mat[1][3], mat[3][1])) +\ wp[5]*(df(mat[0][1], mat[1][0]) + df(mat[2][3], mat[3][2])); float dw2 = wp[0]*(df(mat[0][1], mat[1][2]) + df(mat[1][2], mat[2][3]) + df(mat[1][0], mat[2][1]) + df(mat[2][1], mat[3][2])) +\ wp[1]*(df(mat[0][0], mat[1][1]) + df(mat[2][2], mat[3][3])) +\ wp[2]*(df(mat[0][0], mat[2][2]) + df(mat[1][1], mat[3][3])) +\ wp[3]*df(mat[1][1], mat[2][2]) +\ wp[4]*(df(mat[1][0], mat[3][2]) + df(mat[0][1], mat[2][3])) +\ wp[5]*(df(mat[0][2], mat[1][3]) + df(mat[2][0], mat[3][1])); return (dw1 - dw2); } // Not used yet... float cross_edge(float mat[][4], float *wp) { float hvw1 = wp[3] * (df(mat[1][1], mat[2][1]) + df(mat[1][2], mat[2][2])) + \ wp[0] * (df(mat[0][1], mat[1][1]) + df(mat[2][1], mat[3][1]) + df(mat[0][2], mat[1][2]) + df(mat[2][2], mat[3][2])) + \ wp[2] * (df(mat[0][1], mat[2][1]) + df(mat[1][1], mat[3][1]) + df(mat[0][2], mat[2][2]) + df(mat[1][2], mat[3][2])); float hvw2 = wp[3] * (df(mat[1][1], mat[1][2]) + df(mat[2][1], mat[2][2])) + \ wp[0] * (df(mat[1][0], mat[1][1]) + df(mat[2][0], mat[2][1]) + df(mat[1][2], mat[1][3]) + df(mat[2][2], mat[2][3])) + \ wp[2] * (df(mat[1][0], mat[1][2]) + df(mat[1][1], mat[1][3]) + df(mat[2][0], mat[2][2]) + df(mat[2][1], mat[2][3])); return (hvw1 - hvw2); } ///////////////////////// Super-xBR scaling // perform super-xbr (fast shader version) scaling by factor f=2 only. template void scaleSuperXBRT(u32* data, u32* out, int w, int h) { int outw = w*f, outh = h*f; float wp[6] = { 2.0f, 1.0f, -1.0f, 4.0f, -1.0f, 1.0f }; // First Pass for (int y = 0; y < outh; ++y) { for (int x = 0; x < outw; ++x) { float r[4][4], g[4][4], b[4][4], a[4][4], Y[4][4]; int cx = x / f, cy = y / f; // central pixels on original images // sample supporting pixels in original image for (int sx = -1; sx <= 2; ++sx) { for (int sy = -1; sy <= 2; ++sy) { // clamp pixel locations int csy = clamp(sy + cy, 0, h - 1); int csx = clamp(sx + cx, 0, w - 1); // sample & add weighted components u32 sample = data[csy*w + csx]; r[sx + 1][sy + 1] = (float)R(sample); g[sx + 1][sy + 1] = (float)G(sample); b[sx + 1][sy + 1] = (float)B(sample); a[sx + 1][sy + 1] = (float)A(sample); Y[sx + 1][sy + 1] = (float)(0.2126*r[sx + 1][sy + 1] + 0.7152*g[sx + 1][sy + 1] + 0.0722*b[sx + 1][sy + 1]); } } float min_r_sample = min4(r[1][1], r[2][1], r[1][2], r[2][2]); float min_g_sample = min4(g[1][1], g[2][1], g[1][2], g[2][2]); float min_b_sample = min4(b[1][1], b[2][1], b[1][2], b[2][2]); float min_a_sample = min4(a[1][1], a[2][1], a[1][2], a[2][2]); float max_r_sample = max4(r[1][1], r[2][1], r[1][2], r[2][2]); float max_g_sample = max4(g[1][1], g[2][1], g[1][2], g[2][2]); float max_b_sample = max4(b[1][1], b[2][1], b[1][2], b[2][2]); float max_a_sample = max4(a[1][1], a[2][1], a[1][2], a[2][2]); float d_edge = diagonal_edge(Y, &wp[0]); float r1, g1, b1, a1, r2, g2, b2, a2, rf, gf, bf, af; r1 = (float)w1*(r[0][3] + r[3][0]) + (float)w2*(r[1][2] + r[2][1]); g1 = (float)w1*(g[0][3] + g[3][0]) + (float)w2*(g[1][2] + g[2][1]); b1 = (float)w1*(b[0][3] + b[3][0]) + (float)w2*(b[1][2] + b[2][1]); a1 = (float)w1*(a[0][3] + a[3][0]) + (float)w2*(a[1][2] + a[2][1]); r2 = (float)w1*(r[0][0] + r[3][3]) + (float)w2*(r[1][1] + r[2][2]); g2 = (float)w1*(g[0][0] + g[3][3]) + (float)w2*(g[1][1] + g[2][2]); b2 = (float)w1*(b[0][0] + b[3][3]) + (float)w2*(b[1][1] + b[2][2]); a2 = (float)w1*(a[0][0] + a[3][3]) + (float)w2*(a[1][1] + a[2][2]); // generate and write result if (d_edge <= 0.0f) { rf = r1; gf = g1; bf = b1; af = a1; } else { rf = r2; gf = g2; bf = b2; af = a2; } // anti-ringing, clamp. rf = clamp(rf, min_r_sample, max_r_sample); gf = clamp(gf, min_g_sample, max_g_sample); bf = clamp(bf, min_b_sample, max_b_sample); af = clamp(af, min_a_sample, max_a_sample); int ri = clamp(static_cast(ceilf(rf)), 0, 255); int gi = clamp(static_cast(ceilf(gf)), 0, 255); int bi = clamp(static_cast(ceilf(bf)), 0, 255); int ai = clamp(static_cast(ceilf(af)), 0, 255); out[y*outw + x] = out[y*outw + x + 1] = out[(y + 1)*outw + x] = data[cy*w + cx]; out[(y+1)*outw + x+1] = (ai << 24) | (bi << 16) | (gi << 8) | ri; ++x; } ++y; } // Second Pass wp[0] = 2.0f; wp[1] = 0.0f; wp[2] = 0.0f; wp[3] = 0.0f; wp[4] = 0.0f; wp[5] = 0.0f; for (int y = 0; y < outh; ++y) { for (int x = 0; x < outw; ++x) { float r[4][4], g[4][4], b[4][4], a[4][4], Y[4][4]; // sample supporting pixels in original image for (int sx = -1; sx <= 2; ++sx) { for (int sy = -1; sy <= 2; ++sy) { // clamp pixel locations int csy = clamp(sx - sy + y, 0, f*h - 1); int csx = clamp(sx + sy + x, 0, f*w - 1); // sample & add weighted components u32 sample = out[csy*outw + csx]; r[sx + 1][sy + 1] = (float)R(sample); g[sx + 1][sy + 1] = (float)G(sample); b[sx + 1][sy + 1] = (float)B(sample); a[sx + 1][sy + 1] = (float)A(sample); Y[sx + 1][sy + 1] = (float)(0.2126*r[sx + 1][sy + 1] + 0.7152*g[sx + 1][sy + 1] + 0.0722*b[sx + 1][sy + 1]); } } float min_r_sample = min4(r[1][1], r[2][1], r[1][2], r[2][2]); float min_g_sample = min4(g[1][1], g[2][1], g[1][2], g[2][2]); float min_b_sample = min4(b[1][1], b[2][1], b[1][2], b[2][2]); float min_a_sample = min4(a[1][1], a[2][1], a[1][2], a[2][2]); float max_r_sample = max4(r[1][1], r[2][1], r[1][2], r[2][2]); float max_g_sample = max4(g[1][1], g[2][1], g[1][2], g[2][2]); float max_b_sample = max4(b[1][1], b[2][1], b[1][2], b[2][2]); float max_a_sample = max4(a[1][1], a[2][1], a[1][2], a[2][2]); float d_edge = diagonal_edge(Y, &wp[0]); float r1, g1, b1, a1, r2, g2, b2, a2, rf, gf, bf, af; r1 = (float)w3*(r[0][3] + r[3][0]) + (float)w4*(r[1][2] + r[2][1]); g1 = (float)w3*(g[0][3] + g[3][0]) + (float)w4*(g[1][2] + g[2][1]); b1 = (float)w3*(b[0][3] + b[3][0]) + (float)w4*(b[1][2] + b[2][1]); a1 = (float)w3*(a[0][3] + a[3][0]) + (float)w4*(a[1][2] + a[2][1]); r2 = (float)w3*(r[0][0] + r[3][3]) + (float)w4*(r[1][1] + r[2][2]); g2 = (float)w3*(g[0][0] + g[3][3]) + (float)w4*(g[1][1] + g[2][2]); b2 = (float)w3*(b[0][0] + b[3][3]) + (float)w4*(b[1][1] + b[2][2]); a2 = (float)w3*(a[0][0] + a[3][3]) + (float)w4*(a[1][1] + a[2][2]); // generate and write result if (d_edge <= 0.0f) { rf = r1; gf = g1; bf = b1; af = a1; } else { rf = r2; gf = g2; bf = b2; af = a2; } // anti-ringing, clamp. rf = clamp(rf, min_r_sample, max_r_sample); gf = clamp(gf, min_g_sample, max_g_sample); bf = clamp(bf, min_b_sample, max_b_sample); af = clamp(af, min_a_sample, max_a_sample); int ri = clamp(static_cast(ceilf(rf)), 0, 255); int gi = clamp(static_cast(ceilf(gf)), 0, 255); int bi = clamp(static_cast(ceilf(bf)), 0, 255); int ai = clamp(static_cast(ceilf(af)), 0, 255); out[y*outw + x + 1] = (ai << 24) | (bi << 16) | (gi << 8) | ri; for (int sx = -1; sx <= 2; ++sx) { for (int sy = -1; sy <= 2; ++sy) { // clamp pixel locations int csy = clamp(sx - sy + 1 + y, 0, f*h - 1); int csx = clamp(sx + sy - 1 + x, 0, f*w - 1); // sample & add weighted components u32 sample = out[csy*outw + csx]; r[sx + 1][sy + 1] = (float)R(sample); g[sx + 1][sy + 1] = (float)G(sample); b[sx + 1][sy + 1] = (float)B(sample); a[sx + 1][sy + 1] = (float)A(sample); Y[sx + 1][sy + 1] = (float)(0.2126*r[sx + 1][sy + 1] + 0.7152*g[sx + 1][sy + 1] + 0.0722*b[sx + 1][sy + 1]); } } d_edge = diagonal_edge(Y, &wp[0]); r1 = (float)w3*(r[0][3] + r[3][0]) + (float)w4*(r[1][2] + r[2][1]); g1 = (float)w3*(g[0][3] + g[3][0]) + (float)w4*(g[1][2] + g[2][1]); b1 = (float)w3*(b[0][3] + b[3][0]) + (float)w4*(b[1][2] + b[2][1]); a1 = (float)w3*(a[0][3] + a[3][0]) + (float)w4*(a[1][2] + a[2][1]); r2 = (float)w3*(r[0][0] + r[3][3]) + (float)w4*(r[1][1] + r[2][2]); g2 = (float)w3*(g[0][0] + g[3][3]) + (float)w4*(g[1][1] + g[2][2]); b2 = (float)w3*(b[0][0] + b[3][3]) + (float)w4*(b[1][1] + b[2][2]); a2 = (float)w3*(a[0][0] + a[3][3]) + (float)w4*(a[1][1] + a[2][2]); // generate and write result if (d_edge <= 0.0f) { rf = r1; gf = g1; bf = b1; af = a1; } else { rf = r2; gf = g2; bf = b2; af = a2; } // anti-ringing, clamp. rf = clamp(rf, min_r_sample, max_r_sample); gf = clamp(gf, min_g_sample, max_g_sample); bf = clamp(bf, min_b_sample, max_b_sample); af = clamp(af, min_a_sample, max_a_sample); ri = clamp(static_cast(ceilf(rf)), 0, 255); gi = clamp(static_cast(ceilf(gf)), 0, 255); bi = clamp(static_cast(ceilf(bf)), 0, 255); ai = clamp(static_cast(ceilf(af)), 0, 255); out[(y+1)*outw + x] = (ai << 24) | (bi << 16) | (gi << 8) | ri; ++x; } ++y; } // Third Pass wp[0] = 2.0f; wp[1] = 1.0f; wp[2] = -1.0f; wp[3] = 4.0f; wp[4] = -1.0f; wp[5] = 1.0f; for (int y = outh - 1; y >= 0; --y) { for (int x = outw - 1; x >= 0; --x) { float r[4][4], g[4][4], b[4][4], a[4][4], Y[4][4]; for (int sx = -2; sx <= 1; ++sx) { for (int sy = -2; sy <= 1; ++sy) { // clamp pixel locations int csy = clamp(sy + y, 0, f*h - 1); int csx = clamp(sx + x, 0, f*w - 1); // sample & add weighted components u32 sample = out[csy*outw + csx]; r[sx + 2][sy + 2] = (float)R(sample); g[sx + 2][sy + 2] = (float)G(sample); b[sx + 2][sy + 2] = (float)B(sample); a[sx + 2][sy + 2] = (float)A(sample); Y[sx + 2][sy + 2] = (float)(0.2126*r[sx + 2][sy + 2] + 0.7152*g[sx + 2][sy + 2] + 0.0722*b[sx + 2][sy + 2]); } } float min_r_sample = min4(r[1][1], r[2][1], r[1][2], r[2][2]); float min_g_sample = min4(g[1][1], g[2][1], g[1][2], g[2][2]); float min_b_sample = min4(b[1][1], b[2][1], b[1][2], b[2][2]); float min_a_sample = min4(a[1][1], a[2][1], a[1][2], a[2][2]); float max_r_sample = max4(r[1][1], r[2][1], r[1][2], r[2][2]); float max_g_sample = max4(g[1][1], g[2][1], g[1][2], g[2][2]); float max_b_sample = max4(b[1][1], b[2][1], b[1][2], b[2][2]); float max_a_sample = max4(a[1][1], a[2][1], a[1][2], a[2][2]); float d_edge = diagonal_edge(Y, &wp[0]); float r1, g1, b1, a1, r2, g2, b2, a2, rf, gf, bf, af; r1 = (float)w1*(r[0][3] + r[3][0]) + (float)w2*(r[1][2] + r[2][1]); g1 = (float)w1*(g[0][3] + g[3][0]) + (float)w2*(g[1][2] + g[2][1]); b1 = (float)w1*(b[0][3] + b[3][0]) + (float)w2*(b[1][2] + b[2][1]); a1 = (float)w1*(a[0][3] + a[3][0]) + (float)w2*(a[1][2] + a[2][1]); r2 = (float)w1*(r[0][0] + r[3][3]) + (float)w2*(r[1][1] + r[2][2]); g2 = (float)w1*(g[0][0] + g[3][3]) + (float)w2*(g[1][1] + g[2][2]); b2 = (float)w1*(b[0][0] + b[3][3]) + (float)w2*(b[1][1] + b[2][2]); a2 = (float)w1*(a[0][0] + a[3][3]) + (float)w2*(a[1][1] + a[2][2]); // generate and write result if (d_edge <= 0.0f) { rf = r1; gf = g1; bf = b1; af = a1; } else { rf = r2; gf = g2; bf = b2; af = a2; } // anti-ringing, clamp. rf = clamp(rf, min_r_sample, max_r_sample); gf = clamp(gf, min_g_sample, max_g_sample); bf = clamp(bf, min_b_sample, max_b_sample); af = clamp(af, min_a_sample, max_a_sample); int ri = clamp(static_cast(ceilf(rf)), 0, 255); int gi = clamp(static_cast(ceilf(gf)), 0, 255); int bi = clamp(static_cast(ceilf(bf)), 0, 255); int ai = clamp(static_cast(ceilf(af)), 0, 255); out[y*outw + x] = (ai << 24) | (bi << 16) | (gi << 8) | ri; } } } //// *** Super-xBR code ends here - MIT LICENSE *** /// // void scaleSuperXBR(int factor, u32* data, u32* out, int w, int h) { /* Needs implementation.*/ // switch (factor) { // case 2: scaleSuperXBRT<2>(data, out, w, h); break; // default: ERROR_LOG(VIDEO, "Super-xBR upsampling only implemented for factor 2"); // } // }